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Validation of the Survey of Pre-service Teachers’ Knowledge of Teaching and Technology:

A Multi-Institutional Sample

Abstract

The TPACK (technological pedagogi-
cal content knowledge) framework
(Mishra & Koehler, 2006) has gained
tremendous momentum from within
the educational technology commu-
nity. Specifically, much discourse has
focused on how to measure this mul-
tidimensional construct to further
define the contours of the framework
and potentially make some meaning-
ful predictions. Some have proposed
observation scales while other have
proposed  self-report measures to
gauge the phenomenon. The Survey
of Pre-service Teachers’ Knowledge
of Teaching and Technology instru-
ment is one popular tool designed to
measure TPACK (Schmidt et al.,
2009) specifically from preservice
teachers in teacher education pro-
grams. This study extends the mea-
surement framework by providing a
confirmatory factor analysis of the
theoretical ~model  proposed by
Schmidt et al. (2009) on a sample of
227 preservice teachers from four
public institutions of higher educa-
tion in the southeastern United
States. The data did not fit the theo-
retical 10-factor model implied by
Schmidt et al. (2009), thus, an
exploratory factor analysis was con-
ducted to determine the optimal
structure of the measurement tool for
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these data. This resulted in a nine-
factor model, and there were mea-
surement issues for several of the
constructs. Additionally, the article
provides evidence of external validity
by correlating the instrument scores
with  other  known  technology
constructs.

s with the development and

advancement of virtually any the-

ory or conceptual framework, we
turn to measurement as a way to system-
atically and intentionally study the con-
tours of the potential construct and make
predictions about the phenomenon.
There is little disagreement that TPACK
(technological pedagogical content
knowledge) has had a major influence on
the discourse in educational technology
research. As of July 2014, the seminal arti-
cle by Mishra and Koehler (2006), titled
“Technological Pedagogical Content
Knowledge: A Framework for Teacher
Knowledge,” has garnered more than
2,000 citations according to Google
Scholar. Further, the term TPACK can be
found in the title of more than a thousand
publications to date (GoogleScholar,
2014). As we have struggled with the dis-
course on technology integration practi-
ces of teachers for decades, the TPACK
framework provides a much needed
framework to study the knowledge of
teachers involved with technology inte-
gration through a meaningful lens.

With the development of the TPACK

framework and the discourse that soon
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followed, it is no surprise that measure-
ment tools have been developed in the
research base to measure this multidi-
mensional construct and make sense of
teacher technology integration knowl-
edge and practices. Perhaps the most
influential tool to date is the Survey of
Pre-service Teachers’ Knowledge of
Teaching and Technology (TKTT),
developed by Schmidt, Baran, Thomp-
son, Mishra, Koehler, and Shin (2009).
While this measurement tool has been
used widely in the research base (cited
more than 250 times according to Goo-
gle Scholar and used in several relevant
publications on TPACK, e.g., Abbitt,
2011; Chai, Koh, & Tsai, 2010; Zellowski,
Gleason, Cox, & Bismark, 2013), there
remain questions about the stability and
structure of the instrument (Chai, Koh,
Tsai & Tan, 2011; Koh, Chai, Tsai, 2010).
Thus, this article extends our under-
standing of the measurement of the mul-
tidimensional TPACK construct by
empirically testing the aforementioned
survey tool. First, we provide a review of
the TPACK framework and examine
some of the existing literature wherein
studies attempt to operationalize and
measure the TPACK framework.

TPACK Framework

To address the perceived need for both
researchers and practitioners, Mishra
and Koehler (2006) developed a frame-
work to address the theory, empirical
research, and practical application of
educational technology. Shulman (1986)
proposed the idea of pedagogical content
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knowledge (PCK) comprised of peda-
gogical knowledge (PK) and content
knowledge (CK), wherein researchers
and practitioners examine subject-matter
content as “the most regularly taught
topics in one’s subject area, the most use-
ful forms of representation of those
ideas, the most powerful analogies, illus-
trations, examples, explanations, and
demonstrations—in a word, the ways of
representing and formulating the subject
that make it comprehensible to others”
(p. 9). Founded upon Shulman’s prem-
ise, Mishra and Koehler (2006) concep-
tualized the domain of technological
knowledge (TK) to address the rise of
technology use within the realm of
teaching and learning. They propose that
the technological knowledge is isolated
from each pedagogical and content
knowledge, but demands consideration
in conjunction with the two (Mishra &
Koehler, 2006). In the resulting frame-
work, Mishra and Koehler (2006) name
two new relatives of PCK, technological
pedagogical knowledge (TPK) and tech-
nological content knowledge (TCK), as
well as the cumulative intersection of all
domains as TPCK, or technological ped-
agogical content knowledge, and later
TPACK (Thompson & Mishra, 2007).
Figure 1 visualizes the TPACK frame-
work and the three intersecting areas.

TPACK in Use
Since its inception, researchers and prac-
titioners have used the TPACK

- T -
-~
7 Technological ~ ~
/ Pedagogical Content
Kn
(TPACK)

/

/ Technological

I] (TPK}

Pedagogical
N Content /
~ oK) d

C ts
S SO oo

Figure 1. TPACK framework.

framework broadly to generate dialog
and ideas toward technology integration
in education. “Though not all teachers
have embraced these new technologies
for a range of reasons—including a fear
of change and lack of time and support—
the fact that these technologies are here
to stay cannot be doubted” (Mishra &
Koehler, 2006, p. 1023). In their concep-
tualization of TPACK, Mishra and
Koehler (2006) outline two practical pur-
poses of TPACK: the development of
teacher understanding of integration,
and framing research. These two avenues
of application are often one and the same
in literature. In a major cross section of
TPACK studies, teacher education
researchers use the framework to
approach the question of technology
integration for preservice teachers (Chai,
Koh, & Tsai, 2010; Koh & Divaharan,
2011; Niess, 2005). Furthermore,
researchers similarly apply TPACK in
the professional development of in-ser-
vice educators (Doering, Veletsianos,
Scharber, & Miller, 2009; Graham et al,,
2009). The ongoing examination and
application of TPACK into practice and
research have generated a dialog on the
criticisms of the framework.

TPACK Criticisms and Extensions
Thompson and Schmidt (2010) propose
that the formulation of the TPACK
framework provides practitioners and
researchers with a common vocabulary
for discussing the idea of technology
integration for advancing student learn-
ing. While TPACK helps fulfill that role,
there are numerous critiques within cur-
rent literature that highlight the short-
comings of the frame work, as well as
some of its extensions.

Brantley-Dias and Ertmer (2013) crit-
icize the TPACK framework for not
clearly gauging what types of pedagogy
or curricula provide a “best fit” for tech-
nology integration. Graham (2011) and
Archambault and Barnett (2010) each
call into question the theoretical founda-
tions of TPACK by stating that Shul-
man’s PCK operated with difficult-to-
define domains that make the overall
construct unclear:

TPACK Measure Validation

The TPACK framework builds on
the PCK framework and increases
the conceptual complexity by at
least an order of magnitude.
Because PCK is foundational to the
TPACK framework, researchers
must clearly understand PCK
before they can productively
understand and effectively mea-
sure TPACK constructs. (Graham,
2011, p. 1955)

Furthermore, Brantley-Dias and
Ertmer (2013) state that TPACK pos-
sesses a critical flaw of being both too
large (seven distinct knowledge types)
and too small (compartmentalized) for
practical use or measure. This dichotomy
is central to the ongoing search for a via-
ble TPACK evaluation tool.

Although several criticisms of the
TPACK framework have been made,
there have also been several useful exten-
sions to this framework. TPACK has
previously been used as a framework to
support research on technology integra-
tion, including case studies of mathemat-
ics teachers involved in a learner-
centered professional development proj-
ect (Polly, 2009) and mathematics and
science preservice teachers enrolled in
methods courses (Niess, 2005), survey
research to ascertain K-12 online teach-
ers’ perceptions of their TPACK knowl-
edge (Archambault & Crippen, 2009)
and to study how faculty and students
develop TPACK in a learning technology
by design seminar (Koehler & Mishra,
2005), interpretive research examining
growth of TPCK knowledge exhibited by
in-service teachers enrolled in an online
graduate course (Niess, van Zee, Gillow-
Wiles, 2010), and design-based research
to support TPACK development in pre-
service teachers (Mishra & Koehler,
2006).

One extension worth noting is the
connection of TPACK domains with
various learning activity types for edu-
cational technologies by Harris, Mis-
hra, and Koehler (2009).
“Technologies’ affordances create
opportunities for both enhancing
existing learning activity types and
creating new ones” (Harris, Mishra,
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and Koehler, 2009, p. 406). Harris,
Mishra, and Koehler (2009) provide
examples of knowledge-building, con-
vergent, and divergent activity types
connected to TPACK to further define
the constructs for TPACK users. This
extension is particularly useful when
thinking about possible activities for
preservice teacher education programs
that effectively integrate technology.

Measuring the TPACK Framework
The measurement and evaluation of the
TPACK framework as a viable model for
developing and assessing the effective-
ness of technology integration have
taken place since its inception (Mishra &
Koehler, 2006). These studies have pri-
marily focused on surveying methods of
preservice and in-service teachers’ self-
assessment of technology use, under-
standing, or issues (Archambualt &
Crippen, 2009; Keller, Bonk, & Hew,
2005) and teachers’ change in the per-
ceptions of their understanding (An,
Wilder, & Lim, 2011; Koehler & Mishra,
2005; Koehler, Mishra, & Yahya, 2007).
However, due to the framework being a
relatively new model, empirical research
focusing on existing measurement
instruments’ validity and reliability is
limited (Young, Young, & Hamilton,
2013). The Survey of Pre-service Teach-
ers’ Knowledge of Teaching and Tech-
nology (TKTT) instrument was
developed as part of a study that mea-
sured “pre-service teachers’ self-assess-
ment of the seven knowledge domains
within the TPACK framework” (Schmidt
et al,, 2009, p. 128). The self-assessment
instrument contained 75 items and
prompted the participant to respond to
each item using a five-level Likert scale
(Schmidt et al., 2009). Participants
included 124 elementary and early

childhood preservice teachers enrolled in
a semester-long technology integration
course (Schmidt et al., 2009). The online
survey was completed during their final
class session (Schmidt et al., 2009). Due
to the small sample size, Schmidt et al.
(2009) recognized the limitation of their
sample. After completing a factor analy-
sis and using the Kaiser-Guttman rule,
the researchers evaluated each item and
eliminated those that posed problems in
terms of validity or reliability (Schmidt
et al.,, 2009). Notwithstanding the small
sample size, the study found that the
refined TKTT could serve as a potentially
promising self-assessment tool for mea-
suring preservice teachers’ TPACK
(Schmidt et al., 2009).

While multiple studies have utilized
the Schmidt et al. TKTT survey as a
means to measure preservice teacher
TPACK, there are noted limitations.
Abbitt’s (2011) study of 45 preservice
teachers used the TKTT to collect pre
and post data over a 16-week technology
integration course; however, the small
and homogeneous student sample repre-
sented in this study cannot be general-
ized to a larger diverse population. Chai,
Koh, and Tsai’s (2010) study of preser-
vice secondary teachers used the TKTT
survey to analyze precourse and post-
course perceptions of TK, PK, and CK to
TPACK. This voluntary study included
439 precourse sand 365 postcourse sur-
vey participants. While the study found
somewhat large effect sizes in the TK,
PK, and CK domains, the study did not
include PCK, TCK, and TPK due to the
course design (Chai, Koh & Tsai, 2010).
Zellowski, Gleason, Cox, and Bismark’s
(2013) study used a modified TKTT sur-
vey focused on mathematics content
areas. While the sample size of 315 pre-
service secondary teachers from 15 U.S.

Table 1. Participant Distribution and Percentage by University Site and by Gender

University n Male (n) Female (n) Percent of total
University Site 1 74 8 66 35%
University Site 2 32 7 25 14%
University Site 3 48 12 36 20%
University Site 4 73 11 62 31%
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institutions represented a larger and
more diverse student population, the
results of the exploratory factor analysis
(EFA) only presented specific factors for
TK, CK, PK, and TPACK. The research-
ers selected to remove PCK, TCK, and
TPK due to the absence of a clear pattern
(Zellowski et al., 2013). Thus, more
empirical research is needed on this
measurement tool and its applications.

Purpose
Since Schmidt et al. (2009) developed
the Survey of Pre-service Teachers’
Knowledge of Teaching and Technology,
some studies (Chai, Koh, & T'sai, 2010;
Schmidt et al., 2009) have attempted to
explore the internal structure of the
instrument. However, these prior studies
have primarily used an exploratory fac-
tor analysis to examine the optimal
structure of the instrument as informed
by observed data. The next logical step in
an instrument development and valida-
tion process is to test whether the theo-
retical model from the Technological
Pedagogical Content Knowledge
(TPACK) framework fit the observed
item response data. Thus, this article
attempts to test the TPACK framework
as a viable theoretical tool for measuring
this phenomena. Additionally, we pro-
vide external validation of the tool by
correlating meaningful factors structure
with other technology measures theo-
rized to have a relationship with TPACK.
These two characteristics make our work
distinct from prior research that has
largely focused on the internal structure
of the measurement system using an
exploratory model, with the exception of
Zelkowski, Gleason, Cox, and Bismarck
(2013).

Method

Participants

Participants included N = 227 preservice
elementary school teachers from four
public universities in the southeastern
United States enrolled in a technology
integration course for teachers. Eight-
three percent of the participants were
female, which is not unusual for elemen-
tary teacher education programs.
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Eighty-six percent of the participants
were in the age range of 18 to 22 years
old, and the remaining ones more than
23 years old. In terms of ethnicity, 76%
of the participants self-identified as
White, 7% as Black, 11% as Hispanic, 3%
as Asian, and the remaining classified as
Other. Table 1 provides the distribution
of the participants by each university and
by gender. All of the participants had
recently completed an educational tech-
nology course taught in a teacher educa-
tion program. Generally, this course is
taken early in the teacher education pro-
gram. All institutions were from the
same state in the United States, and thus
had similar curricula objectives to meet
state teacher education standards. A
review of the syllabi from each institu-
tion included within this study shows
activity types consistent with the works
of Harris, Mishra, and Koehler (2009).
This included activities like developing
technology-enhanced lesson plans, using
productivity tools, and evaluating soft-
ware packages for their educational
affordances.

Measures

The Survey of Pre-service Teachers’
Knowledge of Teaching and Technology
(TKTT) theoretically measures 10 related
constructs. These constructs include PK,
TK, CK (which includes LCK, MCK,
SSCK, and SCK), TPK, TCK, PCK, and
TPACK. This section briefly describes
each of these constructs. Details about
the measurement properties of these
constructs can be found in the results
section of the article. Schmidt et al.
(2009) provide a description of each con-
struct (p. 125):

1. PKis pedagogical knowledge, which
refers to the “to the methods and pro-
cesses of teaching and includes
knowledge in classroom manage-
ment, assessment, lesson plan devel-
opment, and student learning.”

2. TK s technology knowledge, which
refers to the “knowledge about vari-
ous technologies, ranging from low-
tech technologies such as pencil and
paper to digital technologies such as

the Internet, digital video, interactive
whiteboards, and software programs.”

3. CKis content knowledge, which is the
“knowledge about actual subject mat-
ter that is to be learned or taught.” CK
was broken down into four subject
areas:

a. LCK, which refers to literacy
knowledge.

b. MCK, which refers to mathe-
matics knowledge.

c. SSCK, which refers to social
sciences knowledge.

d. SCK, which refers to science
knowledge.

4. TPK is technological-pedagogical
knowledge, which refers to “the
knowledge of how various technolo-
gies can be used in teaching, and to
understanding that using technology
may change the way teachers teach.”

5. TCK is technological-content knowl-
edge, which refers to “the knowledge
of how technology can create new
representations for specific content. It
suggests that teachers understand
that, by using a specific technology,
they can change the way learners
practice and understand concepts in a
specific content area.”

6. PCK is pedagogical-content knowl-
edge, which refers to “the content
knowledge that deals with the teach-
ing process. Pedagogical content
knowledge is different for various
content areas, as it blends both con-
tent and pedagogy with the goal being
to develop better teaching practices in
the content areas.”

7. TPACK is technological-pedagogical-
content knowledge, which refers to
“the knowledge required by teachers
for integrating technology into their
teaching in any content area. Teach-
ers have an intuitive understanding of
the complex interplay between the
three basic components of knowledge
(CK, PK, TK) by teaching content
using appropriate pedagogical meth-
ods and technologies.”

In addition to the TKTT, we also

adopted external measures of technol-
ogy-related constructs to discern an

TPACK Measure Validation

external relationship with TPACK. These
measures included attitudes towards
technology, frequency of technology use,
technology self-efficacy, and technology
anxiety. The attitudes toward technol-
ogy, frequency of technology use, and
technology self-efficacy measures were
modified from the Programme for Inter-
national Student Assessment (PISA) and
then slightly modified to match the lan-
guage on the TKTT (PISA, 2015). The
questionnaire has been rigorously ana-
lyzed to demonstrate both reliability and
validity across diverse and international
populations (PISA, 2015). The technol-
ogy anxiety scale was inspired by an
instrument designed to measure com-
puter anxiety (Heinssen, Glass, &
Knight, 1987) and was modified to
reflect common and generic uses of
technology.

Attitudes Toward Technology

The attitudes toward technology scale
included five items that related to the use
of technology in school, personal, and
work settings (e.g., It is important to me
to work with a computer, or Using tech-
nology helps me with my work). It was a
4-point scale ranging from 1 = strongly
disagree to 4 = strongly agree without a
neutral option. The scale demonstrated a
high level of internal consistency reliabil-
ity with Cronbach’s o = .83, which is
above the social science standard of .70
(Nunnaly, 1978).

Frequency of Technology Use

The frequency of technology use scale
included 10 items that required respond-
ents to indicate the frequency with which
they use a type of technology (e.g., word
processing or presentation software).
The response scale included five points: 1
= never, 2 = less than once a month, 3 =
between once a week and once a month, 4
= a few times each week, and 5 = almost
every day. The scale demonstrated a high
level of internal consistency reliability
with Cronbach’s o = .82.
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Figure 2. Visual depiction of the theoretical TPACK
framework model.

Technology Self-Efficacy

The technology self-efficacy scale
included 19 unique items that asked par-
ticipants to rate how well they could exe-
cute a specific technology task (e.g.,
Scroll up and down a document on the
screen, or Attach a file to an e-mail mes-
sage). The response scale included four
points on a continuum: 1 = I don’t know
what this means, 2 = I know what this
means but I cannot do it, 3 =1 can do
this with help from someone, and 4 =1
can do this very well by myself. The scale
demonstrated a high degree of internal
consistency reliability with Cronbach’s

o =.93.

Technology Anxiety

The technology anxiety scale included 21
negatively stated items that required
respondents to rate the statement (e.g., I
am afraid that I will break the technology
if I do something wrong, or I am afraid
to use technology in front of others). The

scale included a 5-point Likert scale from
1 = strongly disagree to 5 = strongly
agree. The scale demonstrated a high
degree of internal consistency reliability
with Cronbach’s o = .97.

Procedures

After making arrangements with faculty
in four different teacher education pro-
grams, we sought to collect data from
students in the final weeks of a technol-
ogy teacher education course. The
courses were taught in both face-to-face
and online settings. The faculty at the
respective institutions collected data
either by posting a link to the survey in
their course management systems and
sending reminder e-mails, or by collect-
ing the data from their face-to-face clas-
ses on the final day of class. The link to
survey was available for a 2-week period,
and during this period, two reminder e-
mails were sent out to the students in the
online courses.

Data Analysis

The theoretical model implied by the
Survey of Pre-service Teachers’ Knowl-
edge of Teaching and Technology
(Schmidt et al., 2009) is a multidimen-
sional latent factor model consisting of
10 correlated factors. Figure 2 visually
displays this model with items labeled
according to the survey item labels used
in this study. The confirmatory factor
analysis (CFA) based on this model was
estimated in Mplus software (Muthén &
Muthén, 2012) with maximum likeli-
hood estimation. There were no missing
data, as the Qualtrics software did not
allow participants to submit the survey
with incomplete response sets.

With the sample size we were able to
obtain (N = 227), we planned to first
assess if we had sufficient power to test
the model in Figure 2. Specifically, we
utilized the simulation results of Mac-
Callum et al. (1999), which demon-
strated that recovery of the true factor
structure is a function of the communal-
ity size, the ratio of variables to factors,
and the sample size. The model in
Figure 2 has a variable-to-factor ratio of
47:10, and their study demonstrated that
factor recovery under similar ratios was
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strong when communalities were high,
even with sample sizes as low as N = 60
(MacCallum et al., 1999). Hence, we
planned to assess the size of the commu-
nalities for our observed data. If they
were considered large, then we planned
to proceed as described above. If not, we
planned to explore each of the 10 factors
in Figure 2 individually with a series of
10 unidimensional CFA models. This
approach to assessing power in factor
analysis acknowledges that there are
many observed data concerns that play a
role in the ability to recover the true fac-
tor structure underlying data, falsifying
some popularly held beliefs that mini-
mum sample sizes and/or minimum var-
iable to sample size ratios are the only
determinants of power in factor analysis
(Brown, 2015; de Winter, Dodou, &
Wieringa, 2009; MacCallum, et al.,
1990).

Fit statistics were used to judge the
quality of the model fit to the data. Spe-
cifically, the root mean square error of
approximation (RMSEA) is a goodness
of fit index that penalizes for complexity
of the model. Adequate fit would be indi-
cated by RMSEA < .06 with a 90% confi-
dence interval that has a lower and upper
bound no higher than .05 and .08,
respectively (Hu & Bentler, 1999). The
standardized root mean square residual
(SRMR) is a summary of residual cova-
riances of the model, which are expected
to be small if the model fits the data ade-
quately. The benchmark was set at SRMR
< .08 for acceptable fit (Hu & Bentler,
1999). The Comparative Fit Index (CFI)
and Tucker-Lewis Index (TLI) assess
whether the specified model fits the data
better than a null model, with values
greater than .95 indicating acceptable fit
and values between .90 and .95 indicat-
ing marginal fit (Hu & Bentler, 1999).
Chi-squared tests of fit were also used
but are known to be very sensitive to
sample size and very conservative indices
of fit. A nonsignificant chi-squared value
indicates good fit. Given adequate fit,
model results such as unstandardized
and standardized factor loadings and R
of observed variables were reviewed.
Given poor fit, an exploratory factor
analysis (EFA) was utilized to let the data
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inform the nature of the underlying
dimensions and how they differed from
the multidimensional factor structure
implied by Schmidt et al. (2009). The
EFA was completed in SPSS software,
utilized principle axis factoring to mirror
the use of communality variance in CFA,
and implemented a promax rotation to
allow for a correlated factor structure.

For each of the 10 dimensions
retained from the preceding factor ana-
lytic process, external validity analysis
was conducted. Specifically, the latent
factor scores from each of the retained
dimensions were correlated with the fol-
lowing external scales: attitudes toward
technology, technology self-efficacy, fre-
quency of technology use, and technol-
ogy anxiety. Observed Cronbach’s alphas
associated with each of the scales were
assessed as an indicator of internal con-
sistency, with o < .80 deemed a neces-
sary observation for use of an external
scale. Then, summated scores across the
items of each external scale were used to
represent the latent construct measured
by each of said scales. The expected cor-
relations between the latent factor scores
and the external scales were such that
positive correlations would be detected
among attitudes toward technology,
technology self-efficacy, and frequency of
technology use and TK, TPK, and
TPACK. We anticipated strong correla-
tions between the measures and TK, and
slightly lower measures for TPK and
TPACK. We anticipated technology anx-
iety would have a negative correlation
with TK and other technology-related
constructs.

Results
To assess power for calibrating the CFA
model in Figure 2, we first estimated
communality variance components
among the 47 items. The distribution of
communality variance ranged from .50
to .88, and was negatively skewed with a
median communality of .75. Only six
variables had a communality estimate
under .64. These communality variance
estimates are considered large under
both the MacCallum et al. (1999) and de
Winter et al. (2009) definitions provided
within their studies on power and

recovery in factor analysis. This indi-
cated that a sample size of N = 227 was
more than sufficient to proceed with the
full CFA model analysis.

The CFA based on the Schmidt et al.
(2009) implied multidimensional factor
structure showed poor fit to the data
according to four of the five fit indices.
The RMSEA = .09 (Cloy% = .085, .092)
was well above the recommended cutoffs
for adequate fit. The SRMR = .08 was the
one fit index result that was acceptable.
The CFI = .80 and TLI = .79 were well
below the benchmark for adequate fit.
The chi-squared test was significant
(x*(989) = 2745.80, p < .001). Taken as
a whole, it was clear that the multidi-
mensional factor structure displayed in
Figure 2 had poor fit to the data, and this
was not due to problematic residual cor-
relations, as indicated by the SRMR
being the one acceptable fit index.

While EFA and CFA are often not
completed on the same data set, it was
deemed that this was an exceptional
instance in that EFA would help fur-
ther the understanding as to why the
dimensionality = structure shown in
Figure 2 was not fitting well to the
data. The EFA discussed in the
method section was imposed on the
observed item data after normality was
assessed. While four of the 47 items
showed kurtosis values greater than
|3|, none showed skewness greater
than |2|, and this was deemed as suffi-
cient evidence of univariate normality,
as EFA can be robust to minor viola-
tions. The sphericity assumption was
met according to Bartlett’s test
(~x*(1081) = 9236.73, p < .001), and
the assumption of sampling adequacy
was met according to a Kaiser-Meyer—
Olkin index greater than .6 (KMO =
.90).

The results of the EFA showed that
there were nine factors with eigenval-
ues greater than one. The percent of
variance explained by each factor and
the standardized loadings of each item
onto each factor are shown in Table 2.
Standardized loadings less than |.30|
are excluded from Table 2 for read-
ability purposes. The dominant load-
ing(s) (i.e., standardized loadings that

TPACK Measure Validation

were greater than other loadings by at
least .10) for each item are highlighted
in gray. The table shows that factors 1,
2, and 9 are difficult to name based on
the item designations provided by
Schmidt et al. (2009), and they do not
align with the CFA subscale
specifications.

Specifically, factor 1 is defined by a
mix of both PK and PCK items, factor 2
is defined by a mix of both TPK and
TPACK items, and factor 9 is defined by
a mix of both PCK and TPACK items.
Restated, the EFA results showed that
one reason for poor fit of the CFA model
was due to a lack of clear distinction in
the data between the PK, PCK, TPK, and
TPACK factors. The preceding interpre-
tation of the EFA results included all
items and their associated loadings
greater than |.30|, without consideration
of dropping items from the analysis. This
approach was used because it was the
most helpful in understanding why the
CFA model in Figure 2 did not fit well.
The results indicated that some items
would need to have cross-loadings in the
CFA model in order to improve fit
because they loaded onto more than one
factor in a similar way. These types of
cross-loadings would require a renaming
of factors and an acknowledgment that
some of the intended constructs of mea-
surement are difficult to isolate from
some other intended constructs of
measurement.

Another way to interpret the EFA
results in Table 2 would be to take the
simple structure approach, in which an
item is eliminated from the analysis if it
does not have a single loading that is at
least .10 units higher than all other load-
ings associated with that item (Kim &
Mueller, 1978). This process would result
in the elimination of all PCK items and
three TPACK items (i.e., Q13_2, Q13_7,
and Q13_8). The interpretation would
then indicate that PCK was not mea-
sured in a way distinct from the other
constructs, and that only some of the
TPACK items were distinct from other
constructs. We have chosen to omit this
interpretation from our discussion
because our goal in this study was to
confirm the intended structure of the full
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Table 2. Factor Results From the EFA

Factor
1 2 3 4 5 6 7 8 9
Schmidt ltem 33.03% 9.76% 8.61% 6.57% 4.18% 3.65% 2.98% 2.82% 2.60%
subscale Variance Variance Variance Variance Variance Variance Variance Variance Variance
explained explained explained explained explained explained explained explained explained
TK Q6_1 31 .70
Q6_2 .39 .76 39
06_3 81 35
Q6_4 40 .82 A1
Q06_5 .37 74 A1
Q6_6 39 71 33 .33
Q6_7 40 53 37 35
MCK Q8_1 84 44
08 2 .89 .50
08_3 81 44 30
SSCK 08_4 .88 32
08_5 84 39
08_6 .89 40
SCK Q8_7 .37 49 .86 30
08_8 35 52 .87
Q8.9 .38 46 .88
LCK Q8_10 .36 .38 41 90 305
Q8_11 .36 .36 39 93
08_12 37 35 38 90
PK Q9_1 77 49 A1 34 45
Q9_2 85 51 .38 32 57
Q9_3 .86 53 35 40 52
Q9_4 87 53 32 37 47
Q9.5 89 .55 31 41 50
Q9_6 75 44 35 3 A7
Q9_7 70 .36 50
PCK Q10_1 62 .39 .56 62
Q10_2 .70 49 63 32 .56
Q10_3 58 .38 .38 .56 32 67
Q10_4 63 43 57 39 40 54
TCK Q111 .36 43 44 42 73 A7
Q1.2 42 51 32 54 69 .36
Q113 40 53 40 31 .50 .76 46
Q11_4 35 45 .37 A7 85 .36
TPK Q12_1 58 .80 48 .38 55 .56
a12_2 57 .83 48 A1 .58 51
212_3 A1 73 .34
a12_4 46 75 37 .34 45 40
a12_5 A1 .81 48 .37 .50 51

(Continued on next page)
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Table 2. (Continued)

TPACK Measure Validation

Factor
1 2 3 4 5 6 7 8 9
Schmidt ltem 33.03% 9.76% 8.61% 6.57% 4.18% 3.65% 2.98% 2.82% 2.60%
subscale Variance Variance Variance Variance Variance Variance Variance Variance Variance
explained explained explained explained explained explained explained explained explained
TPACK Q13_1 A4 42 .54 .36 .66
013_2 .56 .61 .30 48 A1 .68
0133 .39 A1 .33 .39 34 73
013_4 A7 .56 35 43 .55 .69
Q13_5 57 .86 37 .32 48 .66
Q13_6 .60 .81 .36 .32 48 .70
Q13_7 42 .56 43 45 .58
Q13_8 .568 73 30 .32 43 .69

scale that has been used widely in
practice without elimination of items.
In other words, practitioners using this
scale are not eliminating items, but
rather they are interpreting summated
scores on each of the 10 subscales as
representative of the constructs they
are hypothesized to measure. Our CFA
did not support this practice, and the
EFA was used only as a tool to under-
stand the differences between the
hypothesized CFA model and the
observed data factor structure. We
found that many of the items used in
practice to represent PK, PCK, TPK,
and TPACK are not distinguished
from each other in the manner that
theory has hypothesized and that prac-
titioners have assumed when scoring
the tool.

Table 3. EFA Factor Correlation Matrix

Under all methods of interpreting
the EFA results, factors 3 through 8
align well with the six remaining
subscales from Schmidt et al. (2009)
and their specifications in the CFA.
Factor 3 represents TK, factor 4 rep-
resents SSCK, factor 5 represents
LCK, factor 6 represents MCK, factor
7 represents SCK, and factor 8 repre-
sents TCK. Presumably, the portion
of the CFA related to these six fac-
tors was not responsible for the mis-
fit problems.

Table 3 shows the factor correlation
matrix estimated from the estimated
sample EFA factor scores. There is a
plethora of positive, statistically signifi-
cant correlations between the latent fac-
tors derived from the EFA, and no
statistically significant negative

Factor Factor
1 2 3 4 5 6 7 8 9
1 1.00
2 63 1.00
3 23 53 1.00
4 21 24 25 1.00
5 A4 A4 28 38 1.00
6 30 28 30 —.07 02 1.00
7 a7 1 33 10 —.03 56 1.00
8 AT 63 53 30 31 23 19 1.00
9 68" 66" 36 13 27 30 16" 52 1.00

*Statistically significant at the & < .05 level.

correlations. This matches with the
Schmidt et al. (2009) intention in the full
TPACK scale. However, the nonsignifi-
cant correlations between the EFA fac-
tors do not align with Schmidt et al.
(2009) and may be partially responsible
for some of the misfit in the CFA. In
order to further understand the nonsig-
nificant factor correlations, the nature of
factors 1, 2, and 9 would first have to be
determined prior to refitting a CFA and
determining why some of the latent fac-
tors do not correlate as expected.

Only the subscales that were defined
well in the data set were utilized for
external validation purposes. PK, PCK,
TPK, and TPACK were not well distin-
guished internally as latent factors and
therefore were not related to external
factors. Table 4 shows the external vali-

dation results for the TK, SSCK, LCK,
MCK, SCK, and TCK scales. All sub-
scales had positive, statistically signifi-
cant correlations with attitudes toward
technology, self-efficacy with technol-
ogy, and frequency of technology use.
The TK subscale had a negative, statis-
tically significant correlation with tech-
nology anxiety, while all other subscales
had no relationship to technology
anxiety.

Discussion
Interpretation of our results must be
viewed within the limitations and
delimitations of our study. First, we
collected data from preservice teachers
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Table 4. External Validation Correlation Results

External scale

Attitudes toward Self-efficacy Frequency of Technology
Factor technology with technology technology use anxiety
TK 62 39 50 -.34
SSCK 15 23 a7 —.01
LCK 19 32 27 .00
MCK 23 23 20 — .01
SCK 19 21 26 —.02
TCK A1 35 34 -10

*Statistically significant at the « < .05 level.

from four public institutions in the
southeastern United States. As noted by
Koh, Chai, and Tsai (2010), most studies
of the TPACK framework have been
assessed from samples within the United
States with a few exceptions (e.g., Lee &
Tsai, 2010). This facet of the literature
base and our present study clearly has
implications for the generalizability of
our findings. Second, our data were col-
lected in two formats, from both face-to-
face courses and online courses at these
four institutions, and we did not collect
which course format the participants
participated in at each institution. Partic-
ipants may have responded differently
depending on whether they were
enrolled in an online version or face-to-
face version of the course. Third, there
are a number of potential confounding
factors across the participants since the
participants came from four universities
in different teacher education programs
with different instructions and curricu-
lum. Finally, as with any self-report mea-
sure, the honesty and sincerity of the
participants clearly influence the quality
of the data collected. It should also be
noted that while the participants com-
pleted the survey at the conclusion of an
integrated technology course, where that
course fell in their program of study var-
ied. In light of these things, we were able
to generate some important findings.
We were unable to confirm the
dimensionality structure of the TPACK
subscales that was implied by Schmidt
et al. (2009) as a 10-factor model. Four
of the five fit indices showed a poor fit
for our data, leading the research team to
employ an EFA to further examine the
nature and structure of these data. The

CFA findings from our reasonably large,
multidimensional data set indicated that
the dimensionality structure of the
TPACK does not align with that shown
in Figure 2. This poses an interesting
challenge for educational technology
researchers. As noted by Brantley-Dias
and Ertmer (2013), TPACK contains so
many different subconstructs that make
it too compartmentalized for measure-
ment purposes.

Follow-up EFA findings point to a
lack of clear distinction between the PK,
PCK, TPK, and TPACK subscales. These
four intended subscales were shown to
collapse into three unintended, and diffi-
cult-to-name, latent factors according to
our data. One of our identified factors
was composed of items PK and PCK,
while another one of our factors includes
items from both TPK and TPACK. Why
do preservice teachers have difficulty in
delineating among these constructs?
Other researchers have reiterated the
problem using diverse data sets with var-
iations of the Schmidt et al. (2009) mea-
surement tool. For instance, Koh, Chai,
and Tsai (2010) conducted an explor-
atory factor analysis on a sample of 1,185
Singaporean preservice teachers and
found five constructs in their model. In
another study, Zelkowski, Gleason, Cox,
and Bismarck (2013) focused exclusively
on nearly 300 secondary mathematics
preservice teachers from 15 institutions
of higher education. Their analysis
resulted in a seven-factor model (note
that they removed LCK, SCK, and SSCK
to focus only on MCK) with unusual
cross-loadings. They found problems
with measuring the PCK, TCK, and TPK
subscales.
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Fortunately, not all of the con-
structs on the measurement scales are
performing poorly. TK, SSCK, LCK,
MCK, SCK, and TCK appear to be
functioning well for our data. More
importantly, these constructs are cor-
relating as we predicted with other
known constructs of technology,
including attitudes toward technology,
technology self-efficacy, frequency of
technology use, and technology anxi-
ety. All of the constructs (attitudes
toward technology, technology self-
efficacy, and frequency of technology
use) have significant positive relation-
ships with TK, SSCK, LCK, MCK,
SCK, and TCK with the exception of
the technology anxiety measure, which
has either no relationship or a signifi-
cant negative correlation with TK as
predicted. This external validity evi-
dence (Cavanagh & Koehler, 2013) is
an important step in characterizing the
TPACK framework according to the
literature.

The lack of clearly discernible bound-
aries between the elements of PK in the
TPACK framework as measured by
Schmidt et al. (2009) leads to several
questions about the way preservice
teachers think about or recognize
TPACK and its other subconstructs. One
limitation of this research is how many
methods courses a preservice teacher fin-
ished before completing the survey.
Unfortunately, we did not collect this
information, so we cannot make any pre-
dictions. However, the educational tech-
nology course required in the state
teacher education programs is generally
taken early in the program of study of a
preservice teacher, so we can assume that
students had not enrolled in many meth-
ods courses prior to taking the survey. In
conceptualizing the building of TPACK
as a teacher knowledge, the resulting
visualization —might appear as in
Figure 3. The first stage shows that PK,
TK, and CK each exist completely inde-
pendently of the others. In the second
stage, the preservice teacher begins to
develop an understanding of how each of
the domains would intersect with the
others and how to apply that knowledge.
In the third stage, TPACK
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Figure 3. TPACK formulization by preservice teachers.

understanding is achieved, along with
the ability to apply that knowledge. Ulti-
mately, in the perfect teacher, TPACK
knowledge domains are indistinguish-
able from one another in that when this
teacher crafts lessons and curriculum the
teacher would never consider one of the
domains without the other two.

As one envisions TPACK as just
described, questions arise in regard to
this development and the subsequent
ability of the tool to measure said devel-
opment. The first question to consider is
how preservice teachers develop TPACK
knowledge. If preservice teachers are
learning technology as part of educa-
tional theory coursework, their ability to
distinguish between the PK, PCK, TPK,
and TPACK subscales may be dimin-
ished. The mere fact that they are being
trained to think of the pedagogy behind
teaching each subject throughout various
courses, while creating skewed results
within the measurement tool, may be an

indicator of good teacher education
wherein the preservice teacher no

onger retains the ability to distinguish
between the domains of TPACK as they
progress along the path of mastery.
Therefore, the next question to ask is,

if to grasp a pedagogy impacts the
ability to measure TPACK, when does
this happen? This is not a question

that really answerable within this study,
as much as it is a consideration for f
uture work. Finally, does this proposed
phenomenon even happen? This ques-
tion may require investigation outside of
preservice teachers and teacher
education.

Our findings suggest that the current
version of the TKTT proposed by
Schmidt et al. (2009) does not measure
the latent constructs implied by the 10-
factor model. The poor fit indices cou-
pled with the results from our EFA sug-
gest that the preservice teachers in our
study have problems differentiating

among the many subconstructs the
instrument and framework imply.
Although this difference may be
explained by how far into their teacher
education programs our students were
and the content of the educational tech-
nology course completed, these results
suggest the need for further validation
and possible revision of the TKTT.
Future studies need to work to validate
the TKTT on students in various places
in their teacher education programs and
then suggest possible revisions in the
TKTT based on these data.
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